Melanophore sublineage-specific requirement for zebrafish touchtone during neural crest development
نویسندگان
چکیده
The specification, differentiation and maintenance of diverse cell types are of central importance to the development of multicellular organisms. The neural crest of vertebrate animals gives rise to many derivatives, including pigment cells, peripheral neurons, glia and elements of the craniofacial skeleton. The development of neural crest-derived pigment cells has been studied extensively to elucidate mechanisms involved in cell fate specification, differentiation, migration and survival. This analysis has been advanced considerably by the availability of large numbers of mouse and, more recently, zebrafish mutants with defects in pigment cell development. We have identified the zebrafish mutant touchtone (tct), which is characterized by the selective absence of most neural crest-derived melanophores. We find that although wild-type numbers of melanophore precursors are generated in the first day of development and migrate normally in tct mutants, most differentiated melanophores subsequently fail to appear. We demonstrate that the failure in melanophore differentiation in tct mutant embryos is due at least in part to the death of melanoblasts and that tct function is required cell autonomously by melanoblasts. The tct locus is located on chromosome 18 in a genomic region apparently devoid of genes known to be involved in melanophore development. Thus, zebrafish tct may represent a novel as well as selective regulator of melanoblast development within the neural crest lineage. Further, our results suggest that, like other neural crest-derived sublineages, melanogenic precursors constitute a heterogeneous population with respect to genetic requirements for development.
منابع مشابه
Genetic ablation of neural crest cell diversification.
The neural crest generates multiple cell types during embryogenesis but the mechanisms regulating neural crest cell diversification are incompletely understood. Previous studies using mutant zebrafish indicated that foxd3 and tfap2a function early and differentially in the development of neural crest sublineages. Here, we show that the simultaneous loss of foxd3 and tfap2a function in zebrafish...
متن کاملTranscriptional regulation of mitfa accounts for the sox10 requirement in zebrafish melanophore development.
The transcription factor Sox10 is required for the specification, migration and survival of all nonectomesenchymal neural crest derivatives including melanophores. sox10(-/-) zebrafish lack expression of the transcription factor mitfa, which itself is required for melanophore development. We demonstrate that the zebrafish mitfa promoter has sox10 binding sites necessary for activity in vitro, c...
متن کاملTouchtone promotes survival of embryonic melanophores in zebrafish
An outstanding problem in the study of vertebrate development is the identification of the genes that direct neural crest precursor cells to adopt and maintain specific differentiated cell fates. In an effort to identify such genes, we have carried out a mutagenesis screen in zebrafish and isolated mutants that lack neural crest-derived melanophores. In this manuscript we describe the phenotype...
متن کاملTranscription factor Ap-2alpha is necessary for development of embryonic melanophores, autonomic neurons and pharyngeal skeleton in zebrafish.
The genes that control development of embryonic melanocytes are poorly defined. Although transcription factor Ap-2alpha is expressed in neural crest (NC) cells, its role in development of embryonic melanocytes and other neural crest derivatives is unclear because mouse Ap-2alpha mutants die before melanogenesis. We show that zebrafish embryos injected with morpholino antisense oligonucleotides ...
متن کاملEmbryonic requirements for ErbB signaling in neural crest development and adult pigment pattern formation.
Vertebrate pigment cells are derived from neural crest cells and are a useful system for studying neural crest-derived traits during post-embryonic development. In zebrafish, neural crest-derived melanophores differentiate during embryogenesis to produce stripes in the early larva. Dramatic changes to the pigment pattern occur subsequently during the larva-to-adult transformation, or metamorpho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mechanisms of Development
دوره 121 شماره
صفحات -
تاریخ انتشار 2004